Part Number Hot Search : 
F800B DF5A82FU 72512V12 AGN20003 HC908 MC54F1 F1040 20N10
Product Description
Full Text Search
 

To Download AP6982M Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 AP6982M
Advanced Power Electronics Corp.
Low On-resistance Single Drive Requirement Surface Mount Package
D2 D2 D2 D1 D2 D1 D1 D1 G2 G2
N-CHANNEL ENHANCEMENT MODE POWER MOSFET
CH-1
BVDSS RDS(ON) ID
30V 18m 8.8A 30V 25m 7.5A
SO-8 SO-8
S2 G1 S2 S1 G1 S1
CH-2
BVDSS RDS(ON) ID
Description
The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, ultra low on-resistance and cost-effectiveness.
G1
D1
D2
G2 S1 S2
Absolute Maximum Ratings
Symbol VDS VGS ID@TA=25 ID@TA=70 IDM PD@TA=25 TSTG TJ Parameter Drain-Source Voltage Gate-Source Voltage Continuous Drain Current Continuous Drain Current Pulsed Drain Current
1 3 3
Rating N-channel 30 25 8.8 7 30 2.0 0.016 -55 to 150 -55 to 150 P-channel 30 25 7.5 6 30
Units V V A A A W W/
Total Power Dissipation Linear Derating Factor Storage Temperature Range Operating Junction Temperature Range
Thermal Data
Symbol Rthj-a Parameter Thermal Resistance Junction-ambient
3
Value Max. 62.5
Unit /W
Data and specifications subject to change without notice
200526041
AP6982M
CH-1 Electrical Characteristics@Tj=25oC(unless otherwise specified)
Symbol BVDSS BVDSS/Tj RDS(ON) Parameter Drain-Source Breakdown Voltage
2
Test Conditions VGS=0V, ID=250uA
Min. 30 1 -
Typ. 0.02 13 17 5 10 11 6 33 25 320 220 1.57
Max. Units 18 30 3 1 25 100 27 V V/ m m V S uA uA nA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25, ID=1mA
Static Drain-Source On-Resistance
VGS=10V, ID=8A VGS=4.5V, ID=6A
VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Rg
Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (Tj=25 C) Drain-Source Leakage Current (Tj=70oC)
o
VDS=VGS, ID=250uA VDS=10V, ID=8A VDS=30V, VGS=0V VDS=24V, VGS=0V VGS=25V ID=8A VDS=24V VGS=4.5V VDS=15V ID=1A RG=3.3,VGS=10V RD=15 VGS=0V VDS=25V f=1.0MHz f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance
2
1400 2240
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2 2
Test Conditions IS=1.7A, VGS=0V IS=8A, VGS=0V dI/dt=100A/s
Min. -
Typ. 27 22
Max. Units 1.2 V ns nC
Reverse Recovery Time
Reverse Recovery Charge
AP6982M
CH-2 Electrical Characteristics@Tj=25oC(unless otherwise specified)
Symbol BVDSS BVDSS/Tj RDS(ON) VGS(th) gfs IDSS IGSS Qg Qgs Qgd td(on) tr td(off) tf Ciss Coss Crss Rg Parameter Drain-Source Breakdown Voltage Static Drain-Source On-Resistance Gate Threshold Voltage Forward Transconductance
Drain-Source Leakage Current (T j=25 C) Drain-Source Leakage Current (T j=70 C)
o o
Test Conditions VGS=0V, ID=250uA
2
Min. 30 1 -
Typ. 0.005 9 11 3 7 9 5 24 15 810 185 135 1.26
Max. Units 25 36 3 1 25 100 18 1230 V V/ m m V S uA uA nA nC nC nC ns ns ns ns pF pF pF
Breakdown Voltage Temperature Coefficient Reference to 25, ID=1mA
VGS=10V, ID=7A VGS=4.5V, ID=4A VDS=VGS, ID=250uA VDS=10V, ID=7A VDS=30V, VGS=0V VDS=24V, VGS=0V VGS=25V ID=7A VDS=24V VGS=4.5V VDS=15V ID=1A RG=3.3,VGS=10V RD=15 VGS=0V VDS=25V f=1.0MHz f=1.0MHz
Gate-Source Leakage Total Gate Charge
2
Gate-Source Charge Gate-Drain ("Miller") Charge Turn-on Delay Time Rise Time Turn-off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Gate Resistance
2
Source-Drain Diode
Symbol VSD trr Qrr Parameter Forward On Voltage
2 2
Test Conditions IS=1.7A, VGS=0V IS=7A, VGS=0V dI/dt=100A/s
Min. -
Typ. 21 13
Max. Units 1.2 V ns nC
Reverse Recovery Time
Reverse Recovery Charge
Notes:
1.Pulse width limited by Max. junction temperature. 2.Pulse width <300us , duty cycle <2%. 3.Surface mounted on 1 in2 copper pad of FR4 board ; 135/W when mounted on min. copper pad.
AP6982M
Channel-1
60
60
T A =25 o C
50
10V 7.0V 5.0V ID , Drain Current (A)
T A =25 o C
50
10V 7.0V 5.0V
ID , Drain Current (A)
40
40
4.5V
30
4.5V
30
20
20
V G =3.0V
10
V G =3.0V
10
0 0 1 2 3
0 0 1 2 3
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
28
1.6
26
ID=6A T A =25 o C
1.4
ID=8A V G =10V
24
Normalized RDS(ON)
2 4 6 8 10
RDS(ON) (m )
1.2
22
20
1.0
18
0.8
16
14
0.6 -50 0 50 100 150
V GS , Gate-to-Source Voltage (V)
T j , Junction Temperature ( C)
o
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
2.0
6
5 1.5 4
3
Normalized VGS(th) (V)
1.2
IS(A)
1.0
T j =150 o C
2
T j =25 o C
0.5
1
0 0 0.2 0.4 0.6 0.8 1
0.0 -50 0 50 100 150
V SD , Source-to-Drain Voltage (V)
T j , Junction Temperature ( C)
o
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
AP6982M
Channel-1
f=1.0MHz
14
10000
ID=8A
12
VGS , Gate to Source Voltage (V)
10
V DS =16V V DS =20V V DS =24V C (pF) C iss
1000
8
6
4
2
C oss C rss
0
100 0 10 20 30 40 1 5 9 13 17 21 25 29
Q G , Total Gate Charge (nC)
V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Duty factor=0.5
Normalized Thermal Response (R thja)
0.2
10
100us 1ms
0.1
0.1
0.05
ID (A)
1
10ms 100ms
0.02
0.01
PDM
0.01
Single Pulse
t T
Duty factor = t/T Peak Tj = PDM x Rthja + Ta Rthja =135o C/W
0.1
T A =25 C Single Pulse
0.01 0.1 1 10
o
1s DC
100
0.001 0.0001 0.001 0.01 0.1 1 10 100 1000
V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG 4.5V QGS QGD
10% VGS td(on) tr td(off)tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform
AP6982M
Channel-2
60 60
T A = 25 C
50
o
10V 7.0V
50
T A = 150 o C
10V 7.0V
ID , Drain Current (A)
40
5.0V 4.5V
ID , Drain Current (A)
40
5.0V
30
30
4.5V
20
20
10
V G =3.0V
10
V G =3.0V
0 0 1 2 3
0 0 1 2 3
V DS , Drain-to-Source Voltage (V)
V DS , Drain-to-Source Voltage (V)
Fig 1. Typical Output Characteristics
Fig 2. Typical Output Characteristics
38
1.6
35
ID=4A T A =25 C
o
1.4
ID=7A V G =10V
32
Normalized R DS(ON)
RDS(ON) (m )
1.2
29
1.0
26
0.8
23
20
0.6 2 4 6 8 10 -50 0 50 100 150
V GS ,Gate-to-Source Voltage (V)
T j , Junction Temperature ( C)
o
Fig 3. On-Resistance v.s. Gate Voltage
Fig 4. Normalized On-Resistance v.s. Junction Temperature
2.0
6
5 1.5 4
3
Normalized VGS(th) (V)
1.2
IS(A)
1.0
T j =150 o C
2
T j =25 o C
0.5 1
0 0 0.2 0.4 0.6 0.8 1
0.0 -50 0 50 100 150
V SD , Source-to-Drain Voltage (V)
T j ,Junction Temperature ( o C)
Fig 5. Forward Characteristic of
Reverse Diode
Fig 6. Gate Threshold Voltage v.s. Junction Temperature
AP6982M
Channel-2
f=1.0MHz
14 10000
ID=7A
12
VGS , Gate to Source Voltage (V)
10
V DS =16V V DS =20V V DS =24V C (pF)
8
1000
6
C iss
4
2
C oss C rss
100 0 5 10 15 20 25 1 5 9 13 17 21 25 29
0
Q G , Total Gate Charge (nC)
V DS , Drain-to-Source Voltage (V)
Fig 7. Gate Charge Characteristics
Fig 8. Typical Capacitance Characteristics
100
1
Duty factor=0.5
Normalized Thermal Response (Rthja)
0.2
10
0.1
100us 1ms ID (A)
1
0.1
0.05
0.02 0.01
10ms 100ms
0.1
PDM 0.01
Single Pulse
t T
Duty factor = t/T Peak Tj = PDM x Rthja + Ta Rthja=135oC/W
T A =25 o C Single Pulse
1s DC
0.01 0.1 1 10 100
0.001 0.0001 0.001 0.01 0.1 1 10 100 1000
V DS , Drain-to-Source Voltage (V)
t , Pulse Width (s)
Fig 9. Maximum Safe Operating Area
Fig 10. Effective Transient Thermal Impedance
VDS 90%
VG QG 4.5V QGS QGD
10% VGS td(on) tr td(off) tf Charge Q
Fig 11. Switching Time Waveform
Fig 12. Gate Charge Waveform


▲Up To Search▲   

 
Price & Availability of AP6982M

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X